首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   18篇
  2020年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   11篇
  2012年   6篇
  2011年   9篇
  2010年   12篇
  2009年   7篇
  2008年   3篇
  2007年   6篇
  2006年   12篇
  2005年   11篇
  2004年   14篇
  2003年   7篇
  2002年   17篇
  2001年   15篇
  2000年   11篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1966年   1篇
  1959年   1篇
  1955年   1篇
排序方式: 共有238条查询结果,搜索用时 218 毫秒
141.
Aldehydes produced from carbohydrates by oxidation or acid hydrolysis may be visualized by application of aqueous thiosemicarbazide followed by Schmorl's ferricyanide reduction. The thiosemicarbazide reacts with the aldehydes by its hydrazine group, while its thiocarbamyl group remains active. The thiocarbamyl moiety is a strong reducing group that converts ferricyanide to ferrocyanide in Schmorl's reaction. The ferrocyanide is trapped immediately by the ferric salt, which deposits Prussian blue at the site of the aldehydes thereby demonstrating the location of the original substance.  相似文献   
142.
Secreted phospholipase A(2) group X (sPLA(2)-X) has recently been identified in the airways of patients with asthma and may participate in cysteinyl leukotriene (CysLT; C(4), D(4), and E(4)) synthesis. We examined CysLT synthesis and arachidonic acid (AA) and lysophospholipid release by eosinophils mediated by recombinant human sPLA(2)-X. We found that recombinant sPLA(2)-X caused marked AA release and a rapid onset of CysLT synthesis in human eosinophils that was blocked by a selective sPLA(2)-X inhibitor. Exogenous sPLA(2)-X released lysophospholipid species that arise from phospholipids enriched in AA in eosinophils, including phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine as well as plasmenyl phosphatidylcholine and phosphatidylethanolamine. CysLT synthesis mediated by sPLA(2)-X but not AA release could be suppressed by inhibition of cPLA(2)α. Exogenous sPLA(2)-X initiated Ser(505) phosphorylation of cPLA(2)α, an intracellular Ca(2+) flux, and translocation of cPLA(2)α and 5-lipoxygenase in eosinophils. Synthesis of CysLTs in response to sPLA(2)-X or lysophosphatidylcholine was inhibited by p38 or JNK inhibitors but not by a MEK 1/2 inhibitor. A further increase in CysLT synthesis was induced by the addition of sPLA(2)-X to eosinophils under conditions of N-formyl-methionyl-leucyl-phenylalanine-mediated cPLA(2)α activation. These results indicate that sPLA(2)-X participates in AA and lysophospholipid release, resulting in CysLT synthesis in eosinophils through a mechanism involving p38 and JNK MAPK, cPLA(2)α, and 5-lipoxygenase activation and resulting in the amplification of CysLT synthesis during cPLA(2)α activation. Transactivation of eosinophils by sPLA(2)-X may be an important mechanism leading to CysLT formation in the airways of patients with asthma.  相似文献   
143.
144.
RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies.  相似文献   
145.
146.
Mammalian secreted phospholipases A(2) (sPLA(2)s) constitute a family of structurally related enzymes that are likely to play numerous biological roles because of their phospholipid hydrolyzing activity and binding to soluble and membrane-bound proteins, including the M-type receptor. Over the past decade, a number of competitive inhibitors have been developed against the inflammatory-type human group IIA (hGIIA) sPLA(2) with the aim of specifically blocking its catalytic activity and pathophysiological functions. The fact that many of these inhibitors, including the indole analogue Me-Indoxam, inhibit several other sPLA(2)s that bind to the M-type receptor prompted us to investigate the impact of Me-Indoxam and other inhibitors on the sPLA(2)-receptor interaction. By using a Ca(2+) loop mutant derived from a venom sPLA(2) which is insensitive to hGIIA inhibitors but still binds to the M-type receptor, we demonstrate that Me-Indoxam dramatically decreases the affinity of various sPLA(2)s for the receptor, yet an sPLA(2)-Me-Indoxam-receptor complex can form at very high sPLA(2) concentrations. Me-Indoxam inhibits the binding of iodinated mouse sPLA(2)s to the mouse M-type receptor expressed on live cells but also enhances binding of sPLA(2) to phospholipids. Because Me-Indoxam and other competitive inhibitors protrude out of the sPLA(2) catalytic groove, it is likely that the inhibitors interfere with the sPLA(2)-receptor interaction by steric hindrance and to different extents that depend on the type of sPLA(2) and inhibitor. Our finding suggests that the various anti-inflammatory therapeutic effects of sPLA(2) inhibitors may be due not only to inhibition of enzymatic activity but also to modulation of binding of sPLA(2) to the M-type receptor or other as yet unknown protein targets.  相似文献   
147.
Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations.  相似文献   
148.
Increased lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA(2) is a causative agent. Here we show that selective inhibition of Lp-PLA(2) with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA(2) activity and reduced lesion lysophosphatidylcholine content. Analysis of coronary gene expression showed that darapladib exerted a general anti-inflammatory action, substantially reducing the expression of 24 genes associated with macrophage and T lymphocyte functioning. Darapladib treatment resulted in a considerable decrease in plaque area and, notably, a markedly reduced necrotic core area and reduced medial destruction, resulting in fewer lesions with an unstable phenotype. These data show that selective inhibition of Lp-PLA(2) inhibits progression to advanced coronary atherosclerotic lesions and confirms a crucial role of vascular inflammation independent from hypercholesterolemia in the development of lesions implicated in the pathogenesis of myocardial infarction and stroke.  相似文献   
149.
The inactivation of chymotrypsin by 5-benzyl-6-chloro-2-pyrone has been studied. Chloride analysis of the inactivated enzyme suggests that chlorine is no longer present in the complex. 13C NMR spectroscopy of chymotrypsin inactivated with 5-benzyl-6-chloro-2-pyrone-2,6-13 C2 shows the presence of two new resonances from the protein-bound inactivator. The chemical shift values of these resonances are consistent with an intact pyrone ring on the enzyme as well as the replacement of the C-6 chlorine by a different heteroatom. X-ray diffraction analysis at 1.5-A resolution of the inactivator-enzyme complex demonstrates that the gamma-oxygen of the active site serine residue (serine 195) is covalently attached to C-6 of the inactivator and that the pyrone ring is intact. The 5-benzyl group of the inactivator is bound to the enzyme in the hydrophobic specificity pocket. The conformational changes that occur in the protein as a result of complexation with the inactivator are discussed.  相似文献   
150.
Group V-secreted phospholipase A(2) (GV sPLA(2)) hydrolyzes bacterial phospholipids and initiates eicosanoid biosynthesis. Here, we elucidate the role of GV sPLA(2) in the pathophysiology of Escherichia coli pneumonia. Inflammatory cells and bronchial epithelial cells both express GV sPLA(2) after pulmonary E. coli infection. GV(-/-) mice accumulate fewer polymorphonuclear leukocytes in alveoli, have higher levels of E. coli in bronchoalveolar lavage fluid and lung, and develop respiratory acidosis, more severe hypothermia, and higher IL-6, IL-10, and TNF-α levels than GV(+/+) mice after pulmonary E. coli infection. Eicosanoid levels in bronchoalveolar lavage are similar in GV(+/+) and GV(-/-) mice after lung E. coli infection. In contrast, GV(+/+) mice have higher levels of prostaglandin D(2) (PGD(2)), PGF(2α), and 15-keto-PGE(2) in lung and express higher levels of ICAM-1 and PECAM-1 on pulmonary endothelial cells than GV(-/-) mice after lung infection with E. coli. Selective deletion of GV sPLA(2) in non-myeloid cells impairs leukocyte accumulation after pulmonary E. coli infection, and lack of GV sPLA(2) in either bone marrow-derived myeloid cells or non-myeloid cells attenuates E. coli clearance from the alveolar space and the lung parenchyma. These observations show that GV sPLA(2) in bone marrow-derived myeloid cells as well as non-myeloid cells, which are likely bronchial epithelial cells, participate in the regulation of the innate immune response to pulmonary infection with E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号